

1. Overview

ctrace is a raytracing engine written in C. It

is capable of rendering a few simple primitives

to an output file.

2. Basic capabilities

ctrace supports the following primitives;

spheres, axis-aligned boxes, infinite planes,

triangles, and planar polygons of arbitrary

vertex count.

The rendering engine uses the Phong-Blinn

illumination model, with shadows and

specular highlights. It supports multiple point

light sources at infinity, but no spotlights.

Reflection and refraction are supported, with

arbitrary recursion depth and blending levels.

Texturing is supported for infinite planes and

spheres, with a choice of bilinear filtering or

nearest-neighbour resizing. Anti-aliasing of

the image is supported.

The engine is multithreaded, although no

space partition schemes were implemented.

Constructive Solid Geometry (CSG) was

partially completed. Arbitrary

transformations were planned, however time

constraints prevented their implementation.

A significant amount of customisation is

available in config.h, to provide the user with

a speed/quality tradeoff by selectively

disabling engine features.

3. Overview of Extended Features

3.1. Other Primitives

ctrace supports both triangles and planar

polygons of arbitrary vertex count using the

even-odd method [3]. This method is as

follows; flatten the polygon to two

dimensions. From the point of intersection,

draw a line off in any direction. If it passes

through an odd number of lines, the point is

inside the polygon; otherwise, the point is

outside the polygon.

Ordinarily, this would be sufficient to

implement both triangles and boxes.

However, triangles have a more efficient

implementation using the Möeller-Trumbore

algorithm [4], and axis-aligned boxes are

implemented using the Slabs method [1].

For ray/triangle intersection, the Möeller-

Trumbore algorithm describes a fast way of

translating and scaling the triangle and ray

such that the ray is parallel to an axis. This

allows for fast bounds checking simply by

taking dot products of the ray direction with

the edges of the triangle.

For ray/box intersection, the Slabs method is

simple and well publicised; for each set of

adjacent faces, assume them to be infinite

planes and determine if the ray crosses the

near or far one first.

Most examples of the Slabs method provide

several conditional cascades [1], which would

have made sense in earlier days of

computing; however, with the growing

pipeline length in modern processors,

avoiding branch misprediction is a crucial

[redacted]: “ctrace”

[redacted], [redacted]

element for performance. Müller and Geimer

[2] describe a method for unrolling the

computation in a way that suits such devices.

3.2. Multiple light sources

ctrace supports a list of light sources.

3.3. Refractions

ctrace supports refractions. A material has

an associated refractive index, as well as a

blending factor.

3.4. Anti-aliasing

ctrace supports anti-aliasing. The primary

technique for doing so is Full-Scene AA

(FSAA), also known as Super-sampling: the

scene is rendered at a full 4x resolution, and

then a bilinear filter is used to resample it to

the target resolution. This provides a

significant quality enhancement at the cost of

a 4x speed penalty; for most scenes this still

gives acceptable performance owing to the

choice of compiled language.

Anti-aliasing based on edge detection was

researched, temporarily implemented, and

was found to be noticeably more performant

than FSAA. However, it was ultimately

removed for its inability to comply with

certain abstractions in the codebase, as well

as the low-quality shadows it afforded.

3.5. Arbitrary transformations

Arbitrary transformations were planned, and

significant provision was made for them in the

code. However, they were not completed,

owing to time constraints.

3.6. Textures

3D Textures (normal mapping / bump

mapping) were not implemented. However,

flat textures in PNG format are supported on

spheres and infinite planes.

3.7. Constructive Solid Geometry

CSG was implemented. Part of the provision

made for arbitrary transformations was the

creation of a meta-object framework; a CSG

object intercepts the collision and normal

generation, and replaces it with the union,

subtraction, or intersection of two other

objects as appropriate. Using meta-objects in

this way allows for CSG objects to be tested

against other CSG objects, removing the

restriction to only two primitives.

For both the two objects, a ray is traced

toward the object. If there is an intersection,

a second ray is traced in the same direction

to find the exit point. This gives us a one-

dimensional range of points considered

‘inside’ each object. Simple tests allow us to

determine the intersection, union and

subtraction of each range; these correspond

to the CSG operations on the two objects.

Implementing CSG was a relatively simple

affair, although it required some rearranging

of abstractions in the codebase in order to

minimise the amount of times the

intersections were recalculated.

Furthermore, time constraints meant that it

was infeasible to complete the feature; as it

stands there are some graphical issues

related to determining the surface normals of

CSG solids (see §7.3 for details).

3.8. Acceleration algorithms

Although no space partitioning structures

(such as a BSP tree, BVH or a kd-tree) were

implemented, the techniques were

researched.

The engine is multithreaded, using the native

Win32 threading API on Windows and

pthreads elsewhere. The scene is split into

one horizontal stripe per thread, in order to

minimise inter-thread communication. This

technique provides a near-linear speedup up

to the number of cores available in a given

machine.

For simple scenes like the test image, it is

expected that the cost of generating a BVH

could outweigh the cost of naïve image

search. However, for more complex scenes,

or for multiple renderings of the same scene,

the benefits would quickly become apparent.

4. Performance

ctrace’s performance is far from realtime

(which could be attainable [7]) but more than

acceptable for its purpose. Having completed

the ray tracer up to Lab 4 in Python,

performing a straight conversion into C with

a hand-written bmp exporter cut the

renderer’s runtime from approximately 4

seconds to just 80ms, a 50-fold speedup -

and this was prior to the implementation of

multithreading.

In general, moderately complex scenes of

under 50 objects render in seconds on

modern hardware, with 4xFSAA anti-aliasing

and multithreading enabled.

5. Compilation

ctrace is written in ANSI C and was

developed with gcc 4.5.2. With some

exception for comment styles, it compiles

without warnings in strict C89 mode,

although a minor performance loss was

noticed compared to the more relaxed gnu89

default. Build options were tuned for speed,

including –march=native, -O3 and –ffast-

math. The suggestion on the Learn forums to

use the flag –OFast was considered and

rejected owing to it being a new feature in

GCC 4.6 which, although available for my

operating system, is not yet packaged by my

preferred distributor.

(-OFast only adds –ffast-math anyway.)

A shell script was used to control building

the project in lieu of a makefile, providing

several simplicity advantages. Mercurial was

used for local source code control.

There are several options available in

config.h regarding speed/quality trade-offs

that may be useful to those evaluating the

software. For instance, time-consuming

features such as anti-aliasing can be disabled

while prototyping new features.

The third-party LodePNG [8] library is

linked statically under the terms of the BSD

License, to enable PNG file format support

for exporting images and reading textures.

This replaced a hand-written BMP library.

6. Summary

Overall, ctrace was enjoyable to write, and it

meets the primary criteria for the

assignment, as well as implementing several

of the extension features. Porting the engine

from Python to C resulted in a significant

speedup, and allows the output binary to be

small and self-contained.

Although there was insufficient time to

complete some of the more exotic features

such as CSG, 3D textures, spotlights, soft

shadows, transformations and space

partitioning algorithms, it is still capable of

producing a visibly pleasing output.

7. Example Output

7.1. Figure 1.

The test scene used when developing the raytracer, demonstrating some core features.

Above: rendered at 1920x1080 with 4xFSAA, bilinear texture filtering, and 4 levels of reflection

depth. This render took 38.7s to complete. Below: rendered at 600x400, bilinear texture filtering,

and 1 level of reflection depth. This render took only 0.7s to complete.

7.2. Figure 2.

A hollow Utah Teapot was modelled in Autodesk 3DSMax and exported to the ASE format. The

vertex data was then manually extracted and converted to a set of triangle objects. Here, ctrace is

rendering 1024 triangle objects at 600x400, with no anti-aliasing or reflections. This render took

38.6s to complete.

7.3. Figure 3.

Constructive Solid Geometry (CSG) was implemented, although time constraints prevented the

correction of some graphical errors regarding the surface normals. Here, ctrace is performing three

renderings of the union, intersection, and subtraction respectively of two reflective spheres, each

at 800x400 with 4xFSAA. Rendering time was on the order of 0.5s per scene.

7.3. Hardware.

Where noted, the times are as performed with multithreading enabled on an early-2007 model Intel

Q6600, running at its stock speed of 2.4GHz. During rendering, all cores appear to be at 100%

utilisation.

Times were initially measured using the standard UNIX time command; however when PNG support

was added for loading textures and exporting the rendered scene, it was considered that this added

a measurable delay in execution. Hence an internal timer was added, the results of which will be

visible if ctrace is ran from a command prompt.

8. Citations

The internet was, as always, a valuable resource whilst developing ctrace. The lecture notes were

also obviously indispensable. A list of references follows.

[1] “Ray-box intersection”, G. Scott Owen (1998)

http://www.siggraph.org/education/materials/HyperGraph/raytrace/rtinter3.htm

[2] “Branchless Ray/Box intersection”, Thierry Berger-Perrin

http://ompf.org/ray/ray_box.html

[3] “PNPOLY – Point Inclusion in Polygon Test”, W. Randolph Franklin (2006)

http://www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html

[4] “Fast, Minimum Storage Ray/Triangle Intersection”, Möller and Trumbore (2003)

http://www.cs.virginia.edu/~gfx/Courses/2003/ImageSynthesis/papers/Acceleration/Fast%20

MinimumStorage%20RayTriangle%20Intersection.pdf

[5] “Raytracing: Textures, Cameras and Speed”, Jacco Bikker (2005)

http://www.devmaster.net/articles/raytracing_series/part6.php

Note that this article has a bug; see ctrace/object.c:324 for details

[6] “Ray Tracing: Graphics for the Masses”, Paul Rademacher

http://www.cs.unc.edu/~rademach/xroads-RT/RTarticle.html

[7] Arauna, a realtime raytracing engine

http://igad.nhtv.nl/~bikker/

[8] LodePNG, a PNG image decoder and encoder

http://lodev.org/lodepng/

http://www.siggraph.org/education/materials/HyperGraph/raytrace/rtinter3.htm
http://ompf.org/ray/ray_box.html
http://www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html
http://www.cs.virginia.edu/~gfx/Courses/2003/ImageSynthesis/papers/Acceleration/Fast%20MinimumStorage%20RayTriangle%20Intersection.pdf
http://www.cs.virginia.edu/~gfx/Courses/2003/ImageSynthesis/papers/Acceleration/Fast%20MinimumStorage%20RayTriangle%20Intersection.pdf
http://www.devmaster.net/articles/raytracing_series/part6.php
http://www.cs.unc.edu/~rademach/xroads-RT/RTarticle.html
http://igad.nhtv.nl/~bikker/
http://lodev.org/lodepng/

