llamacpphtmld/llama.cpp

1860 lines
59 KiB
C++

#include "llama.h"
#include "ggml.h"
#include <cinttypes>
#include <fstream>
#include <random>
#include <map>
#include <unordered_map>
#include <queue>
#include <regex>
#include <cassert>
#include <cstring>
#if defined(_WIN32) && !defined(_POSIX_MAPPED_FILES)
#define WIN32_LEAN_AND_MEAN
#include <Windows.h>
#else
#include <sys/types.h>
#include <sys/mman.h>
#include <unistd.h>
#include <fcntl.h>
#endif
#define Min(X, Y) ((Y) > (X) ? (X) : (Y))
#define Max(X, Y) ((Y) < (X) ? (X) : (Y))
#define LLAMA_USE_SCRATCH
#define LLAMA_MAX_SCRATCH_BUFFERS 16
#define LLAMA_ASSERT(x) \
do { \
if (!(x)) { \
fprintf(stderr, "LLAMA_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
abort(); \
} \
} while (0)
// determine number of model parts based on the dimension
static const std::unordered_map<int, int> LLAMA_N_PARTS = {
{ 4096, 1 },
{ 5120, 2 },
{ 6656, 4 },
{ 8192, 8 },
};
// available llama models
enum e_model {
MODEL_UNKNOWN,
MODEL_7B,
MODEL_13B,
MODEL_30B,
MODEL_65B,
};
static const size_t MB = 1024*1024;
// computed for n_ctx == 2048
// TODO: dynamically determine these sizes
// needs modifications in ggml
static const std::map<e_model, size_t> MEM_REQ_SCRATCH0 = {
{ MODEL_7B, 512ull*MB },
{ MODEL_13B, 512ull*MB },
{ MODEL_30B, 512ull*MB },
{ MODEL_65B, 512ull*MB },
};
static const std::map<e_model, size_t> MEM_REQ_SCRATCH1 = {
{ MODEL_7B, 512ull*MB },
{ MODEL_13B, 512ull*MB },
{ MODEL_30B, 512ull*MB },
{ MODEL_65B, 512ull*MB },
};
// 2*n_embd*n_ctx*n_layer*sizeof(float16)
static const std::map<e_model, size_t> MEM_REQ_KV_SELF = {
{ MODEL_7B, 1026ull*MB },
{ MODEL_13B, 1608ull*MB },
{ MODEL_30B, 3124ull*MB },
{ MODEL_65B, 5120ull*MB },
};
// this is mostly needed for temporary mul_mat buffers to dequantize the data
// not actually needed if BLAS is disabled
static const std::map<e_model, size_t> MEM_REQ_EVAL = {
{ MODEL_7B, 768ull*MB },
{ MODEL_13B, 1024ull*MB },
{ MODEL_30B, 1280ull*MB },
{ MODEL_65B, 1536ull*MB },
};
// default hparams (LLaMA 7B)
struct llama_hparams {
int32_t n_vocab = 32000;
int32_t n_ctx = 512; // this is provided as user input?
int32_t n_embd = 4096;
int32_t n_mult = 256;
int32_t n_head = 32;
int32_t n_layer = 32;
int32_t n_rot = 64;
int32_t f16 = 1;
};
struct llama_layer {
// normalization
struct ggml_tensor * attention_norm;
// attention
struct ggml_tensor * wq;
struct ggml_tensor * wk;
struct ggml_tensor * wv;
struct ggml_tensor * wo;
// normalization
struct ggml_tensor * ffn_norm;
// ff
struct ggml_tensor * w1;
struct ggml_tensor * w2;
struct ggml_tensor * w3;
};
struct llama_kv_cache {
struct ggml_tensor * k;
struct ggml_tensor * v;
struct ggml_context * ctx;
std::vector<uint8_t> buf;
int n; // number of tokens currently in the cache
};
struct llama_model {
e_model type = MODEL_UNKNOWN;
llama_hparams hparams;
struct ggml_tensor * tok_embeddings;
struct ggml_tensor * norm;
struct ggml_tensor * output;
std::vector<llama_layer> layers;
// context
struct ggml_context * ctx;
// key + value cache for the self attention
// TODO: move to llama_state
struct llama_kv_cache kv_self;
// the model memory buffer
std::vector<uint8_t> buf;
// model memory mapped file
void * mm_addr = NULL;
uint64_t mm_length = 0;
// tensors
int n_loaded;
std::unordered_map<std::string, struct ggml_tensor *> tensors;
};
struct llama_vocab {
using id = int32_t;
using token = std::string;
struct token_score {
token tok;
float score;
};
std::unordered_map<token, id> token_to_id;
std::vector<token_score> id_to_token;
};
struct llama_context {
std::mt19937 rng;
int64_t t_load_us = 0;
int64_t t_start_us = 0;
bool has_evaluated_once = false;
int64_t t_sample_us = 0;
int64_t t_eval_us = 0;
int64_t t_p_eval_us = 0;
int32_t n_sample = 0; // number of tokens sampled
int32_t n_eval = 0; // number of eval calls
int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
llama_model model;
llama_vocab vocab;
size_t mem_per_token = 0;
// decode output (2-dimensional array: [n_tokens][n_vocab])
std::vector<float> logits;
bool logits_all = false;
// input embedding (1-dimensional array: [n_embd])
std::vector<float> embedding;
// memory buffers used to evaluate the model
// TODO: move in llama_state
std::vector<uint8_t> buf_compute;
std::vector<uint8_t> buf_scratch[LLAMA_MAX_SCRATCH_BUFFERS];
int buf_last = 0;
size_t buf_max_size[LLAMA_MAX_SCRATCH_BUFFERS] = { 0 };
void use_buf(struct ggml_context * ctx, int i) {
#if defined(LLAMA_USE_SCRATCH)
size_t last_size = 0;
if (i == -1) {
last_size = ggml_set_scratch(ctx, { 0, 0, nullptr, });
} else {
auto & buf = buf_scratch[i];
last_size = ggml_set_scratch(ctx, { 0, buf.size(), buf.data(), });
}
if (buf_last >= 0) {
buf_max_size[buf_last] = Max(buf_max_size[buf_last], last_size);
}
buf_last = i;
#else
(void) i;
(void) ctx;
#endif
}
size_t get_buf_max_mem(int i) const {
#if defined(LLAMA_USE_SCRATCH)
return buf_max_size[i];
#else
(void) i;
return 0;
#endif
}
};
//
// kv cache
//
static bool kv_cache_init(
const struct llama_hparams & hparams,
struct llama_kv_cache & cache,
ggml_type wtype,
int n_ctx) {
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int64_t n_mem = (int64_t)n_layer*n_ctx;
const int64_t n_elements = n_embd*n_mem;
cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB);
struct ggml_init_params params;
params.mem_size = cache.buf.size();
params.mem_buffer = cache.buf.data();
params.no_alloc = false;
cache.ctx = ggml_init(params);
if (!cache.ctx) {
fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__);
return false;
}
cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
return true;
}
static void kv_cache_free(struct llama_kv_cache & cache) {
if (cache.ctx) {
ggml_free(cache.ctx);
cache.ctx = nullptr;
}
}
struct llama_context_params llama_context_default_params() {
struct llama_context_params result = {
/*.n_ctx =*/ 512,
/*.n_parts =*/ -1,
/*.seed =*/ 0,
/*.f16_kv =*/ false,
/*.logits_all =*/ false,
/*.vocab_only =*/ false,
/*.use_mlock =*/ false,
/*.embedding =*/ false,
/*.progress_callback =*/ nullptr,
/*.progress_callback_user_data =*/ nullptr,
};
return result;
}
//
// model loading
//
static void *mmap_file(const char *fname, uint64_t *mm_length) {
#if defined(_WIN32) && !defined(_POSIX_MAPPED_FILES)
HANDLE hFile = CreateFileA(fname,
GENERIC_READ,
FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,
NULL,
OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL | FILE_ATTRIBUTE_NOT_CONTENT_INDEXED,
NULL);
if (hFile == INVALID_HANDLE_VALUE) return 0;
LARGE_INTEGER fileSize;
fileSize.QuadPart = -1;
GetFileSizeEx(hFile, &fileSize);
int64_t length = fileSize.QuadPart;
HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
CloseHandle(hFile);
if (!hMapping) return 0;
void *addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
CloseHandle(hMapping);
if (!addr) return 0;
#else
int fd = open(fname, O_RDONLY);
if (fd == -1) return 0;
int64_t length = lseek(fd, 0, SEEK_END);
void *addr = mmap(NULL, length, PROT_READ, MAP_SHARED, fd, 0);
close(fd);
if (addr == MAP_FAILED) return 0;
#endif
*mm_length = length;
return addr;
}
static void munmap_file(void * addr, size_t length) {
#if defined(_WIN32) && !defined(_POSIX_MAPPED_FILES)
UnmapViewOfFile(addr);
#else
munmap(addr, length);
#endif
}
static bool report_bad_magic(const char *path, uint32_t got, uint32_t want) {
fprintf(stderr,
"%s: invalid model file (bad magic [got %#x want %#x])\n"
"\tyou most likely need to regenerate your ggml files\n"
"\tthe benefit is you'll get 10-100x faster load times\n"
"\tsee https://github.com/ggerganov/llama.cpp/issues/91\n"
"\tuse convert-pth-to-ggml.py to regenerate from original pth\n"
"\tuse migrate-ggml-2023-03-30-pr613.py if you deleted originals\n",
path, got, want);
return false;
}
static bool llama_model_load(
const std::string & fname,
llama_context & lctx,
int n_ctx,
int n_parts,
ggml_type memory_type,
bool vocab_only,
llama_progress_callback progress_callback,
void *progress_callback_user_data) {
fprintf(stderr, "%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str());
lctx.t_start_us = ggml_time_us();
auto & model = lctx.model;
auto & vocab = lctx.vocab;
auto fin = std::ifstream(fname, std::ios::binary);
if (!fin) {
fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
return false;
}
std::vector<char> f_buf(1024*1024);
fin.rdbuf()->pubsetbuf(f_buf.data(), f_buf.size());
fin.seekg(0, fin.end);
const size_t file_size = fin.tellg();
fin.seekg(0);
// verify magic
{
uint32_t magic;
fin.read((char *) &magic, sizeof(magic));
if (magic == LLAMA_FILE_MAGIC_UNVERSIONED) {
fprintf(stderr, "%s: invalid model file '%s' (too old, regenerate your model files or convert them with convert-unversioned-ggml-to-ggml.py!)\n",
__func__, fname.c_str());
return false;
}
if (magic != LLAMA_FILE_MAGIC) {
return report_bad_magic(fname.c_str(), magic, LLAMA_FILE_MAGIC);
}
uint32_t format_version;
fin.read((char *) &format_version, sizeof(format_version));
if (format_version != LLAMA_FILE_VERSION) {
fprintf(stderr, "%s: invalid model file '%s' (unsupported format version %" PRIu32 ", expected %d)\n",
__func__, fname.c_str(), format_version, LLAMA_FILE_VERSION);
return false;
}
}
int n_ff = 0;
// load hparams
{
auto & hparams = model.hparams;
fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
//fin.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx));
fin.read((char *) &hparams.n_embd, sizeof(hparams.n_embd));
fin.read((char *) &hparams.n_mult, sizeof(hparams.n_mult));
fin.read((char *) &hparams.n_head, sizeof(hparams.n_head));
fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
fin.read((char *) &hparams.n_rot, sizeof(hparams.n_rot));
fin.read((char *) &hparams.f16, sizeof(hparams.f16));
hparams.n_ctx = n_ctx;
n_ff = ((2*(4*hparams.n_embd)/3 + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult;
if (n_parts < 1) {
n_parts = LLAMA_N_PARTS.at(hparams.n_embd);
}
// temp warning to tell the user to use "--n_parts"
if (hparams.f16 == 4 && n_parts != 1) {
fprintf(stderr, "%s: GPTQ model detected - are you sure n_parts should be %d? we normally expect it to be 1\n", __func__, n_parts);
fprintf(stderr, "%s: use '--n_parts 1' if necessary\n", __func__);
}
if (hparams.n_layer == 32) {
model.type = e_model::MODEL_7B;
}
if (hparams.n_layer == 40) {
model.type = e_model::MODEL_13B;
}
if (hparams.n_layer == 60) {
model.type = e_model::MODEL_30B;
}
if (hparams.n_layer == 80) {
model.type = e_model::MODEL_65B;
}
fprintf(stderr, "%s: n_vocab = %d\n", __func__, hparams.n_vocab);
fprintf(stderr, "%s: n_ctx = %d\n", __func__, hparams.n_ctx);
fprintf(stderr, "%s: n_embd = %d\n", __func__, hparams.n_embd);
fprintf(stderr, "%s: n_mult = %d\n", __func__, hparams.n_mult);
fprintf(stderr, "%s: n_head = %d\n", __func__, hparams.n_head);
fprintf(stderr, "%s: n_layer = %d\n", __func__, hparams.n_layer);
fprintf(stderr, "%s: n_rot = %d\n", __func__, hparams.n_rot);
fprintf(stderr, "%s: f16 = %d\n", __func__, hparams.f16);
fprintf(stderr, "%s: n_ff = %d\n", __func__, n_ff);
fprintf(stderr, "%s: n_parts = %d\n", __func__, n_parts);
fprintf(stderr, "%s: type = %d\n", __func__, model.type);
}
// load vocab
{
std::string word;
vocab.id_to_token.resize(model.hparams.n_vocab);
std::vector<char> tmp(64);
for (int i = 0; i < model.hparams.n_vocab; i++) {
uint32_t len;
fin.read((char *) &len, sizeof(len));
word.resize(len);
if (len > 0) {
tmp.resize(len);
fin.read(tmp.data(), len);
word.assign(tmp.data(), len);
} else {
word.clear();
}
float score;
fin.read((char *) &score, sizeof(score));
vocab.token_to_id[word] = i;
auto &tok_score = vocab.id_to_token[i];
tok_score.tok = word;
tok_score.score = score;
}
}
if (vocab_only) {
return true;
}
// for the big tensors, we have the option to store the data in 16-bit floats or quantized
// in order to save memory and also to speed up the computation
// wtype is for per-layer weights, while vtype is for other weights
ggml_type wtype, vtype;
switch (model.hparams.f16) {
case 0: wtype = vtype = GGML_TYPE_F32; break;
case 1: wtype = vtype = GGML_TYPE_F16; break;
case 2: wtype = vtype = GGML_TYPE_Q4_0; break;
case 3: wtype = vtype = GGML_TYPE_Q4_1; break;
case 4: wtype = GGML_TYPE_Q4_1; vtype = GGML_TYPE_F16; break;
default:
{
fprintf(stderr, "%s: invalid model file '%s' (bad f16 value %d)\n",
__func__, fname.c_str(), model.hparams.f16);
return false;
}
}
// map model into memory
char *mm_addr = NULL;
model.mm_addr = mmap_file(fname.c_str(), &model.mm_length);
if (model.mm_addr == NULL) {
fprintf(stderr, "%s: failed to mmap '%s'\n", __func__, fname.c_str());
return false;
}
mm_addr = (char *)model.mm_addr;
fprintf(stderr, "%s: ggml map size = %6.2f MB\n", __func__, model.mm_length/(1024.0*1024.0));
auto & ctx = model.ctx;
size_t ctx_size = 0;
{
const auto &hparams = model.hparams;
const int n_layer = hparams.n_layer;
ctx_size += (5 + 10*n_layer)*256; // object overhead
fprintf(stderr, "%s: ggml ctx size = %6.2f KB\n", __func__, ctx_size/1024.0);
}
// print memory requirements
{
const size_t scale = memory_type == GGML_TYPE_F32 ? 2 : 1;
// this is the total memory required to run the inference
const size_t mem_required =
ctx_size +
model.mm_length +
MEM_REQ_SCRATCH0.at(model.type) +
MEM_REQ_SCRATCH1.at(model.type) +
MEM_REQ_EVAL.at (model.type);
// this is the memory required by one llama_state
const size_t mem_required_state =
scale*MEM_REQ_KV_SELF.at(model.type);
fprintf(stderr, "%s: mem required = %7.2f MB (+ %7.2f MB per state)\n", __func__,
mem_required / 1024.0 / 1024.0, mem_required_state / 1024.0 / 1024.0);
}
// create the ggml context
{
lctx.model.buf.resize(ctx_size);
struct ggml_init_params params = {
/*.mem_size =*/ lctx.model.buf.size(),
/*.mem_buffer =*/ lctx.model.buf.data(),
/*.no_alloc =*/ true,
};
model.ctx = ggml_init(params);
if (!model.ctx) {
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
return false;
}
}
// prepare memory for the weights
{
const auto & hparams = model.hparams;
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_vocab = hparams.n_vocab;
model.layers.resize(n_layer);
model.tok_embeddings = ggml_new_tensor_2d(ctx, vtype, n_embd, n_vocab);
model.norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
model.output = ggml_new_tensor_2d(ctx, vtype, n_embd, n_vocab);
// map by name
model.tensors["tok_embeddings.weight"] = model.tok_embeddings;
model.tensors["norm.weight"] = model.norm;
model.tensors["output.weight"] = model.output;
for (int i = 0; i < n_layer; ++i) {
auto & layer = model.layers[i];
layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.wq = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
layer.wk = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
layer.wv = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
layer.wo = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.w1 = ggml_new_tensor_2d(ctx, wtype, n_embd, n_ff);
layer.w2 = ggml_new_tensor_2d(ctx, wtype, n_ff, n_embd);
layer.w3 = ggml_new_tensor_2d(ctx, wtype, n_embd, n_ff);
// map by name
model.tensors["layers." + std::to_string(i) + ".attention_norm.weight"] = layer.attention_norm;
model.tensors["layers." + std::to_string(i) + ".attention.wq.weight"] = layer.wq;
model.tensors["layers." + std::to_string(i) + ".attention.wk.weight"] = layer.wk;
model.tensors["layers." + std::to_string(i) + ".attention.wv.weight"] = layer.wv;
model.tensors["layers." + std::to_string(i) + ".attention.wo.weight"] = layer.wo;
model.tensors["layers." + std::to_string(i) + ".ffn_norm.weight"] = layer.ffn_norm;
model.tensors["layers." + std::to_string(i) + ".feed_forward.w1.weight"] = layer.w1;
model.tensors["layers." + std::to_string(i) + ".feed_forward.w2.weight"] = layer.w2;
model.tensors["layers." + std::to_string(i) + ".feed_forward.w3.weight"] = layer.w3;
}
}
std::vector<uint8_t> tmp;
if (progress_callback) {
progress_callback(0.0, progress_callback_user_data);
}
fprintf(stderr, "%s: loading tensors from '%s'\n", __func__, fname.c_str());
// load weights
{
size_t total_size = 0;
model.n_loaded = 0;
while (true) {
int32_t n_dims;
int32_t length;
int32_t ftype;
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
fin.read(reinterpret_cast<char *>(&length), sizeof(length));
fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
if (fin.eof()) {
break;
}
int32_t nelements = 1;
int32_t ne[2] = { 1, 1 };
for (int i = 0; i < n_dims; ++i) {
fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
nelements *= ne[i];
}
std::string name(length, 0);
fin.read(&name[0], length);
if (model.tensors.find(name.data()) == model.tensors.end()) {
fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
return false;
}
auto tensor = model.tensors[name.data()];
if (ggml_nelements(tensor) != nelements) {
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
return false;
}
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%" PRId64 ", %" PRId64 "], expected [%d, %d]\n",
__func__, name.data(), tensor->ne[0], tensor->ne[1], ne[0], ne[1]);
return false;
}
if (0) {
static const char * ftype_str[] = { "f32", "f16", "q4_0", "q4_1", };
fprintf(stderr, "%24s - [%5d, %5d], type = %6s\n", name.data(), ne[0], ne[1], ftype_str[ftype]);
}
switch (ftype) {
case 0: // f32
case 1: // f16
break;
case 2: // q4_0
case 3: // q4_1
assert(ne[0] % 64 == 0);
break;
default:
fprintf(stderr, "%s: unknown ftype %d in model file\n", __func__, ftype);
return false;
};
// load the tensor data into memory without copying or reading it
size_t offset = fin.tellg();
size_t tensor_data_size = ggml_nbytes(tensor);
offset = (offset + 31) & -32;
tensor->data = mm_addr + offset;
fin.seekg(offset + tensor_data_size);
total_size += tensor_data_size;
model.n_loaded++;
// progress
if (progress_callback) {
double current_progress = size_t(fin.tellg()) / double(file_size);
progress_callback(current_progress, progress_callback_user_data);
}
}
fin.close();
fprintf(stderr, "%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size/1024.0/1024.0, model.n_loaded);
if (model.n_loaded == 0) {
fprintf(stderr, "%s: WARN no tensors loaded from model file - assuming empty model for testing\n", __func__);
} else if (model.n_loaded != (int) model.tensors.size()) {
fprintf(stderr, "%s: ERROR not all tensors loaded from model file - expected %zu, got %d\n", __func__, model.tensors.size(), model.n_loaded);
return false;
}
}
// loading time will be recalculate after the first eval, so
// we take page faults deferred by mmap() into consideration
lctx.t_load_us = ggml_time_us() - lctx.t_start_us;
if (progress_callback) {
progress_callback(1.0, progress_callback_user_data);
}
return true;
}
// evaluate the transformer
//
// - lctx: llama context
// - tokens: new batch of tokens to process
// - n_past: the context size so far
// - n_threads: number of threads to use
//
static bool llama_eval_internal(
llama_context & lctx,
const llama_token * tokens,
const int n_tokens,
const int n_past,
const int n_threads) {
const int64_t t_start_us = ggml_time_us();
const int N = n_tokens;
const auto & model = lctx.model;
const auto & hparams = model.hparams;
auto & kv_self = model.kv_self;
LLAMA_ASSERT(!!kv_self.ctx);
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_ctx = hparams.n_ctx;
const int n_head = hparams.n_head;
const int n_vocab = hparams.n_vocab;
const int n_rot = hparams.n_embd/hparams.n_head;
auto & mem_per_token = lctx.mem_per_token;
auto & buf_compute = lctx.buf_compute;
struct ggml_init_params params = {
/*.mem_size =*/ buf_compute.size(),
/*.mem_buffer =*/ buf_compute.data(),
/*.no_alloc =*/ false,
};
struct ggml_context * ctx0 = ggml_init(params);
// for big prompts, if BLAS is enabled, it is better to use only one thread
// otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
ggml_cgraph gf = {};
gf.n_threads = N >= 32 && ggml_cpu_has_blas() ? 1 : n_threads;
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
memcpy(embd->data, tokens, N*ggml_element_size(embd));
struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.tok_embeddings, embd);
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * inpSA = inpL;
struct ggml_tensor * cur;
lctx.use_buf(ctx0, 0);
// norm
{
cur = ggml_rms_norm(ctx0, inpL);
// cur = attention_norm*cur
cur = ggml_mul(ctx0,
ggml_repeat(ctx0, model.layers[il].attention_norm, cur),
cur);
}
// self-attention
{
// compute Q and K and RoPE them
struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0);
struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0);
// store key and value to memory
{
// compute the transposed [N, n_embd] V matrix
struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, cur), n_embd, N));
struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past));
struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd,
( n_ctx)*ggml_element_size(kv_self.v),
(il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v));
// important: storing RoPE-ed version of K in the KV cache!
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
}
struct ggml_tensor * Q =
ggml_permute(ctx0,
Qcur,
0, 2, 1, 3);
struct ggml_tensor * K =
ggml_permute(ctx0,
ggml_reshape_3d(ctx0,
ggml_view_1d(ctx0, kv_self.k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(kv_self.k)*n_embd),
n_embd/n_head, n_head, n_past + N),
0, 2, 1, 3);
// K * Q
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
// KQ_scaled = KQ / sqrt(n_embd/n_head)
struct ggml_tensor * KQ_scaled =
ggml_scale(ctx0,
KQ,
ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head)));
// KQ_masked = mask_past(KQ_scaled)
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past);
// KQ = soft_max(KQ_masked)
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
// split cached V into n_head heads
struct ggml_tensor * V =
ggml_view_3d(ctx0, kv_self.v,
n_past + N, n_embd/n_head, n_head,
n_ctx*ggml_element_size(kv_self.v),
n_ctx*ggml_element_size(kv_self.v)*n_embd/n_head,
il*n_ctx*ggml_element_size(kv_self.v)*n_embd);
#if 1
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
#else
// make V contiguous in memory to speed up the matmul, however we waste time on the copy
// on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation
// is there a better way?
struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, kv_self.v->type, n_past + N, n_embd/n_head, n_head));
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_cont, KQ_soft_max);
#endif
// KQV_merged = KQV.permute(0, 2, 1, 3)
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
// cur = KQV_merged.contiguous().view(n_embd, N)
cur = ggml_cpy(ctx0,
KQV_merged,
ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
// projection (no bias)
cur = ggml_mul_mat(ctx0,
model.layers[il].wo,
cur);
}
lctx.use_buf(ctx0, 1);
struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
// feed-forward network
{
// norm
{
cur = ggml_rms_norm(ctx0, inpFF);
// cur = ffn_norm*cur
cur = ggml_mul(ctx0,
ggml_repeat(ctx0, model.layers[il].ffn_norm, cur),
cur);
}
struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
model.layers[il].w3,
cur);
cur = ggml_mul_mat(ctx0,
model.layers[il].w1,
cur);
// SILU activation
cur = ggml_silu(ctx0, cur);
cur = ggml_mul(ctx0, cur, tmp);
cur = ggml_mul_mat(ctx0,
model.layers[il].w2,
cur);
}
cur = ggml_add(ctx0, cur, inpFF);
// input for next layer
inpL = cur;
}
lctx.use_buf(ctx0, 0);
// used at the end to optionally extract the embeddings
struct ggml_tensor * embeddings = NULL;
// norm
{
inpL = ggml_rms_norm(ctx0, inpL);
// inpL = norm*inpL
inpL = ggml_mul(ctx0,
ggml_repeat(ctx0, model.norm, inpL),
inpL);
embeddings = inpL;
}
// lm_head
inpL = ggml_mul_mat(ctx0, model.output, inpL);
lctx.use_buf(ctx0, -1);
// logits -> probs
//inpL = ggml_soft_max(ctx0, inpL);
// run the computation
ggml_build_forward_expand(&gf, inpL);
ggml_graph_compute (ctx0, &gf);
// print timing information per ggml operation (for debugging purposes)
// requires GGML_PERF to be defined
//ggml_graph_print(&gf);
// plot the computation graph in dot format (for debugging purposes)
//if (n_past%100 == 0) {
// ggml_graph_dump_dot(&gf, NULL, "llama.dot");
//}
//embd_w.resize(n_vocab*N);
//memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N);
// extract logits
{
auto & logits_out = lctx.logits;
if (lctx.logits_all) {
logits_out.resize(n_vocab * N);
memcpy(logits_out.data(), (float *) ggml_get_data(inpL), sizeof(float)*n_vocab*N);
} else {
// return result for just the last token
logits_out.resize(n_vocab);
memcpy(logits_out.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
}
}
// extract embeddings
if (lctx.embedding.size()) {
auto & embedding_out = lctx.embedding;
embedding_out.resize(n_embd);
memcpy(embedding_out.data(), (float *) ggml_get_data(embeddings) + (n_embd*(N - 1)), sizeof(float)*n_embd);
}
if (mem_per_token == 0) {
mem_per_token = ggml_used_mem(ctx0)/N;
}
#if 0
printf("\n%s: used_mem = %.3f MB, scratch -- %.3f MB %.3f MB\n", __func__,
ggml_used_mem(ctx0)/1024.0/1024.0,
lctx.get_buf_max_mem(0)/1024.0/1024.0,
lctx.get_buf_max_mem(1)/1024.0/1024.0);
#endif
ggml_free(ctx0);
// measure the performance only for the single-token evals
if (N == 1) {
lctx.t_eval_us += ggml_time_us() - t_start_us;
lctx.n_eval++;
}
else if (N > 1) {
lctx.t_p_eval_us += ggml_time_us() - t_start_us;
lctx.n_p_eval += N;
}
return true;
}
//
// tokenizer
//
static size_t utf8_len(char src) {
const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
uint8_t highbits = static_cast<uint8_t>(src) >> 4;
return lookup[highbits];
}
struct llama_sp_symbol {
using index = int;
index prev;
index next;
const char * text;
size_t n;
};
struct llama_sp_bigram {
struct comparator {
bool operator()(llama_sp_bigram & l, llama_sp_bigram & r) {
return (l.score < r.score) || (l.score == r.score && l.left > r.left);
}
};
using queue_storage = std::vector<llama_sp_bigram>;
using queue = std::priority_queue<llama_sp_bigram, queue_storage, comparator>;
llama_sp_symbol::index left;
llama_sp_symbol::index right;
float score;
size_t size;
};
// original implementation:
// https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
struct llama_tokenizer {
llama_tokenizer(const llama_vocab & vocab): vocab_(vocab) {}
void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
// split string into utf8 chars
int index = 0;
size_t offs = 0;
while (offs < text.size()) {
llama_sp_symbol sym;
size_t char_len = Min(text.size() - offs, utf8_len(text[offs]));
sym.text = text.c_str() + offs;
sym.n = char_len;
offs += char_len;
sym.prev = index - 1;
sym.next = offs == text.size() ? -1 : index + 1;
index++;
symbols_.emplace_back(std::move(sym));
}
// seed the work queue with all possible 2-character tokens.
for (size_t i = 1; i < symbols_.size(); ++i) {
try_add_bigram(i - 1, i);
}
// keep substituting the highest frequency pairs for as long as we can.
while (!work_queue_.empty()) {
auto bigram = work_queue_.top();
work_queue_.pop();
auto & left_sym = symbols_[bigram.left];
auto & right_sym = symbols_[bigram.right];
// if one of the symbols already got merged, skip it.
if (left_sym.n == 0 || right_sym.n == 0 ||
left_sym.n + right_sym.n != bigram.size) {
continue;
}
// merge the right sym into the left one
left_sym.n += right_sym.n;
right_sym.n = 0;
//printf("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
// remove the right sym from the chain
left_sym.next = right_sym.next;
if (right_sym.next >= 0) {
symbols_[right_sym.next].prev = bigram.left;
}
// find more substitutions
try_add_bigram(left_sym.prev, bigram.left);
try_add_bigram(bigram.left, left_sym.next);
}
for (int i = 0; i != -1; i = symbols_[i].next) {
auto & symbol = symbols_[i];
auto token = vocab_.token_to_id.find(std::string(symbol.text, symbol.n));
if (token == vocab_.token_to_id.end()) {
// output any symbols that did not form tokens as bytes.
for (int j = 0; j < (int) symbol.n; ++j) {
llama_vocab::id token_id = static_cast<uint8_t>(symbol.text[j]) + 3;
output.push_back(token_id);
}
} else {
output.push_back((*token).second);
}
}
}
private:
void try_add_bigram(int left, int right) {
if (left == -1 || right == -1) {
return;
}
const std::string text = std::string(symbols_[left].text, symbols_[left].n + symbols_[right].n);
auto token = vocab_.token_to_id.find(text);
if (token == vocab_.token_to_id.end()) {
return;
}
if (static_cast<size_t>((*token).second) >= vocab_.id_to_token.size()) {
return;
}
const auto &tok_score = vocab_.id_to_token[(*token).second];
llama_sp_bigram bigram;
bigram.left = left;
bigram.right = right;
bigram.score = tok_score.score;
bigram.size = text.size();
work_queue_.push(bigram);
}
const llama_vocab & vocab_;
std::vector<llama_sp_symbol> symbols_;
llama_sp_bigram::queue work_queue_;
};
static std::vector<llama_vocab::id> llama_tokenize(const llama_vocab & vocab, const std::string & text, bool bos) {
llama_tokenizer tokenizer(vocab);
std::vector<llama_vocab::id> output;
if (text.size() == 0) {
return output;
}
if (bos) {
output.push_back(1);
}
tokenizer.tokenize(text, output);
return output;
}
//
// sampling
//
static void sample_top_k(std::vector<std::pair<float, llama_vocab::id>> & logits_id, int top_k) {
// find the top k tokens
std::partial_sort(
logits_id.begin(),
logits_id.begin() + top_k, logits_id.end(),
[](const std::pair<float, llama_vocab::id> & a, const std::pair<float, llama_vocab::id> & b) {
return a.first > b.first;
});
logits_id.resize(top_k);
}
static llama_vocab::id llama_sample_top_p_top_k(
llama_context & lctx,
const std::vector<llama_vocab::id> & last_n_tokens,
int top_k,
float top_p,
float temp,
float repeat_penalty) {
auto & rng = lctx.rng;
const int n_logits = lctx.model.hparams.n_vocab;
const auto & logits = lctx.logits;
const auto * plogits = logits.data() + logits.size() - n_logits;
if (temp <= 0) {
// select the token with the highest logit directly
float max_logit = plogits[0];
llama_vocab::id max_id = 0;
for (int i = 1; i < n_logits; ++i) {
if (plogits[i] > max_logit) {
max_logit = plogits[i];
max_id = i;
}
}
return max_id;
}
std::vector<std::pair<float, llama_vocab::id>> logits_id;
logits_id.reserve(n_logits);
{
const float scale = 1.0f/temp;
for (int i = 0; i < n_logits; ++i) {
// repetition penalty from ctrl paper (https://arxiv.org/abs/1909.05858)
// credit https://github.com/facebookresearch/llama/compare/main...shawwn:llama:main
if (std::find(last_n_tokens.begin(), last_n_tokens.end(), i) != last_n_tokens.end()) {
// if score < 0 then repetition penalty has to multiplied to reduce the previous token probability
if (plogits[i] < 0.0f) {
logits_id.push_back(std::make_pair(plogits[i]*scale*repeat_penalty, i));
} else {
logits_id.push_back(std::make_pair(plogits[i]*scale/repeat_penalty, i));
}
} else {
logits_id.push_back(std::make_pair(plogits[i]*scale, i));
}
}
}
sample_top_k(logits_id, top_k > 0 ? Min(top_k, n_logits) : n_logits);
// compute probs for the top k tokens
std::vector<float> probs;
probs.reserve(logits_id.size());
float maxl = logits_id[0].first;
double sum = 0.0;
for (const auto & kv : logits_id) {
const float p = expf(kv.first - maxl);
probs.push_back(p);
sum += p;
}
// normalize the probs
for (auto & p : probs) {
p /= sum;
}
if (top_p < 1.0) {
double cumsum = 0.0;
for (int i = 0; i < (int) probs.size(); i++) {
cumsum += probs[i];
if (cumsum >= top_p) {
probs.resize(i + 1);
logits_id.resize(i + 1);
break;
}
}
}
//printf("\n");
//for (int i = 0; i < (int) 10; i++) {
// printf("%d: '%s' %f\n", i, lctx.vocab.id_to_token.at(logits_id[i].second).tok.c_str(), probs[i]);
//}
//printf("\n\n");
//exit(0);
std::discrete_distribution<> dist(probs.begin(), probs.end());
int idx = dist(rng);
return logits_id[idx].second;
}
//
// quantization
//
// TODO: reuse code from the llama_model_load() somehow
static bool llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, int itype) {
ggml_type type = GGML_TYPE_Q4_1;
switch (itype) {
case 2: type = GGML_TYPE_Q4_0; break;
case 3: type = GGML_TYPE_Q4_1; break;
default: fprintf(stderr, "%s: invalid quantization type %d\n", __func__, itype); return 1;
};
if (type != GGML_TYPE_Q4_0 && type != GGML_TYPE_Q4_1) {
fprintf(stderr, "%s: invalid quantization type %d\n", __func__, type);
return false;
}
llama_vocab vocab;
printf("%s: loading model from '%s'\n", __func__, fname_inp.c_str());
auto finp = std::ifstream(fname_inp, std::ios::binary);
if (!finp) {
fprintf(stderr, "%s: failed to open '%s' for reading\n", __func__, fname_inp.c_str());
return false;
}
auto fout = std::ofstream(fname_out, std::ios::binary);
if (!fout) {
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname_out.c_str());
return false;
}
// verify magic
{
uint32_t magic;
finp.read((char *) &magic, sizeof(magic));
if (magic == LLAMA_FILE_MAGIC_UNVERSIONED) {
fprintf(stderr, "%s: invalid model file '%s' (too old, regenerate your model files!)\n",
__func__, fname_inp.c_str());
return false;
}
if (magic != LLAMA_FILE_MAGIC) {
return report_bad_magic(fname_inp.c_str(), magic, LLAMA_FILE_MAGIC);
}
fout.write((char *) &magic, sizeof(magic));
uint32_t format_version;
finp.read((char *) &format_version, sizeof(format_version));
if (format_version != LLAMA_FILE_VERSION) {
fprintf(stderr, "%s: invalid model file '%s' (unsupported format version %" PRIu32 ", expected %d)\n",
__func__, fname_inp.c_str(), format_version, LLAMA_FILE_VERSION);
return false;
}
fout.write((char *) &format_version, sizeof(format_version));
}
llama_hparams hparams;
// load hparams
{
finp.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
//finp.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx));
finp.read((char *) &hparams.n_embd, sizeof(hparams.n_embd));
finp.read((char *) &hparams.n_mult, sizeof(hparams.n_mult));
finp.read((char *) &hparams.n_head, sizeof(hparams.n_head));
finp.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
finp.read((char *) &hparams.n_rot, sizeof(hparams.n_rot));
finp.read((char *) &hparams.f16, sizeof(hparams.f16));
printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx);
printf("%s: n_embd = %d\n", __func__, hparams.n_embd);
printf("%s: n_mult = %d\n", __func__, hparams.n_mult);
printf("%s: n_head = %d\n", __func__, hparams.n_head);
printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
printf("%s: f16 = %d\n", __func__, hparams.f16);
fout.write((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
//fout.write((char *) &hparams.n_ctx, sizeof(hparams.n_ctx));
fout.write((char *) &hparams.n_embd, sizeof(hparams.n_embd));
fout.write((char *) &hparams.n_mult, sizeof(hparams.n_mult));
fout.write((char *) &hparams.n_head, sizeof(hparams.n_head));
fout.write((char *) &hparams.n_layer, sizeof(hparams.n_layer));
fout.write((char *) &hparams.n_rot, sizeof(hparams.n_rot));
fout.write((char *) &itype, sizeof(hparams.f16));
}
// load vocab
{
const int32_t n_vocab = hparams.n_vocab;
if (n_vocab != hparams.n_vocab) {
fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n",
__func__, fname_inp.c_str(), n_vocab, hparams.n_vocab);
return false;
}
std::vector<char> word(32);
vocab.id_to_token.resize(n_vocab);
for (int i = 0; i < n_vocab; i++) {
uint32_t len;
finp.read ((char *) &len, sizeof(len));
fout.write((char *) &len, sizeof(len));
word.resize(len);
finp.read ((char *) &word[0], len);
fout.write((char *) &word[0], len);
float score;
finp.read ((char *) &score, sizeof(score));
fout.write((char *) &score, sizeof(score));
vocab.token_to_id[word.data()] = i;
auto &tok_score = vocab.id_to_token[i];
tok_score.tok = word.data();
tok_score.score = score;
}
}
// load weights
{
size_t total_size_org = 0;
size_t total_size_new = 0;
std::vector<float> work;
std::vector<uint8_t> data_u8;
std::vector<ggml_fp16_t> data_f16;
std::vector<float> data_f32;
std::vector<int64_t> hist_all(1 << 4, 0);
while (true) {
int32_t n_dims;
int32_t length;
int32_t ftype;
finp.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
finp.read(reinterpret_cast<char *>(&length), sizeof(length));
finp.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
if (finp.eof()) {
break;
}
int32_t nelements = 1;
int32_t ne[2] = { 1, 1 };
for (int i = 0; i < n_dims; ++i) {
finp.read (reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
nelements *= ne[i];
}
std::string name(length, 0);
finp.read (&name[0], length);
{
// ensure tensor data is aligned
uint64_t offset = finp.tellg();
offset = (offset + 31) & -32;
finp.seekg(offset);
}
{
static const char * ftype_str[] = { "f32", "f16", "q4_0", "q4_1", };
printf("%48s - [%5d, %5d], type = %6s ", name.data(), ne[0], ne[1], ftype_str[ftype]);
}
// regexes of tensor names to be quantized
const std::vector<std::string> k_names = {
".*weight",
};
bool quantize = false;
for (const auto & s : k_names) {
if (std::regex_match(name, std::regex(s))) {
quantize = true;
break;
}
}
// quantize only 2D tensors
quantize &= (n_dims == 2);
if (quantize) {
if (ftype != 0 && ftype != 1) {
fprintf(stderr, "%s: unsupported ftype %d for integer quantization\n", __func__, ftype);
return false;
}
if (ftype == 1) {
data_f16.resize(nelements);
finp.read(reinterpret_cast<char *>(data_f16.data()), nelements * sizeof(ggml_fp16_t));
data_f32.resize(nelements);
for (int i = 0; i < nelements; ++i) {
data_f32[i] = ggml_fp16_to_fp32(data_f16[i]);
}
} else {
data_f32.resize(nelements);
finp.read(reinterpret_cast<char *>(data_f32.data()), nelements * sizeof(float));
}
ftype = itype;
} else {
const int bpe = (ftype == 0) ? sizeof(float) : sizeof(uint16_t);
data_u8.resize(nelements*bpe);
finp.read(reinterpret_cast<char *>(data_u8.data()), nelements * bpe);
}
fout.write(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
fout.write(reinterpret_cast<char *>(&length), sizeof(length));
fout.write(reinterpret_cast<char *>(&ftype), sizeof(ftype));
for (int i = 0; i < n_dims; ++i) {
fout.write(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
}
fout.write(&name[0], length);
{
// ensure tensor data is aligned
uint64_t offset = fout.tellp();
offset = (offset + 31) & -32;
fout.seekp(offset);
}
if (quantize) {
printf("quantizing .. ");
work.resize(nelements); // for quantization
size_t cur_size = 0;
std::vector<int64_t> hist_cur(1 << 4, 0);
switch (type) {
case GGML_TYPE_Q4_0:
{
cur_size = ggml_quantize_q4_0(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
} break;
case GGML_TYPE_Q4_1:
{
cur_size = ggml_quantize_q4_1(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
} break;
default:
{
fprintf(stderr, "%s: unsupported quantization type %d\n", __func__, type);
return false;
}
}
fout.write(reinterpret_cast<char *>(work.data()), cur_size);
total_size_new += cur_size;
printf("size = %8.2f MB -> %8.2f MB | hist: ", nelements * sizeof(float)/1024.0/1024.0, cur_size/1024.0/1024.0);
for (int i = 0; i < (int) hist_cur.size(); ++i) {
hist_all[i] += hist_cur[i];
}
for (int i = 0; i < (int) hist_cur.size(); ++i) {
printf("%5.3f ", hist_cur[i] / float(nelements));
}
printf("\n");
} else {
printf("size = %8.3f MB\n", data_u8.size()/1024.0/1024.0);
fout.write(reinterpret_cast<char *>(data_u8.data()), data_u8.size());
total_size_new += data_u8.size();
}
total_size_org += nelements * sizeof(float);
}
printf("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
printf("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
{
int64_t sum_all = 0;
for (int i = 0; i < (int) hist_all.size(); ++i) {
sum_all += hist_all[i];
}
printf("%s: hist: ", __func__);
for (int i = 0; i < (int) hist_all.size(); ++i) {
printf("%5.3f ", hist_all[i] / float(sum_all));
}
printf("\n");
}
}
finp.close();
fout.close();
return true;
}
//
// interface implementation
//
struct llama_context * llama_init_from_file(
const char * path_model,
struct llama_context_params params) {
ggml_time_init();
llama_context * ctx = new llama_context;
if (params.seed <= 0) {
params.seed = time(NULL);
}
ctx->rng = std::mt19937(params.seed);
ctx->logits_all = params.logits_all;
ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
if (!llama_model_load(path_model, *ctx, params.n_ctx, params.n_parts, memory_type,
params.vocab_only, params.progress_callback,
params.progress_callback_user_data)) {
fprintf(stderr, "%s: failed to load model\n", __func__);
llama_free(ctx);
return nullptr;
}
if (params.use_mlock) {
char *err;
if (!ggml_mlock(ctx->model.ctx,
ctx->model.mm_addr,
ctx->model.mm_length,
&err)) {
fprintf(stderr, "%s\n", err);
free(err);
llama_free(ctx);
return nullptr;
}
}
// reserve memory for context buffers
if (!params.vocab_only) {
if (!kv_cache_init(ctx->model.hparams, ctx->model.kv_self, memory_type, ctx->model.hparams.n_ctx)) {
fprintf(stderr, "%s: kv_cache_init() failed for self-attention cache\n", __func__);
llama_free(ctx);
return nullptr;
}
{
const size_t memory_size = ggml_nbytes(ctx->model.kv_self.k) + ggml_nbytes(ctx->model.kv_self.v);
fprintf(stderr, "%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
}
const auto & hparams = ctx->model.hparams;
// resized during inference
if (params.logits_all) {
ctx->logits.reserve(hparams.n_ctx*hparams.n_vocab);
} else {
ctx->logits.reserve(hparams.n_ctx);
}
if (params.embedding){
ctx->embedding.resize(hparams.n_embd);
}
ctx->buf_compute.resize(MEM_REQ_EVAL.at(ctx->model.type));
ctx->buf_scratch[0].resize(MEM_REQ_SCRATCH0.at(ctx->model.type));
ctx->buf_scratch[1].resize(MEM_REQ_SCRATCH1.at(ctx->model.type));
}
return ctx;
}
void llama_free(struct llama_context * ctx) {
kv_cache_free(ctx->model.kv_self);
if (ctx->model.ctx) {
ggml_free(ctx->model.ctx);
}
if (ctx->model.mm_addr) {
munmap_file(ctx->model.mm_addr, ctx->model.mm_length);
}
delete ctx;
}
int llama_model_quantize(
const char * fname_inp,
const char * fname_out,
int itype) {
if (!llama_model_quantize_internal(fname_inp, fname_out, itype)) {
fprintf(stderr, "%s: failed to quantize\n", __func__);
return 1;
}
return 0;
}
// Returns the KV cache that will contain the context for the
// ongoing prediction with the model.
const uint8_t * llama_get_kv_cache(struct llama_context * ctx) {
return ctx->model.kv_self.buf.data();
}
// Returns the size of the KV cache
size_t llama_get_kv_cache_size(struct llama_context * ctx) {
return ctx->model.kv_self.buf.size();
}
int llama_get_kv_cache_token_count(struct llama_context * ctx) {
return ctx->model.kv_self.n;
}
// Sets the KV cache containing the current context for the model
void llama_set_kv_cache(
struct llama_context * ctx,
const uint8_t * kv_cache,
size_t n_size,
int n_token_count) {
// Make sure we have the same kv cache setup
LLAMA_ASSERT(ctx->model.kv_self.buf.size() == n_size);
memcpy(ctx->model.kv_self.buf.data(), kv_cache, n_size);
ctx->model.kv_self.n = n_token_count;
}
int llama_eval(
struct llama_context * ctx,
const llama_token * tokens,
int n_tokens,
int n_past,
int n_threads) {
if (!llama_eval_internal(*ctx, tokens, n_tokens, n_past, n_threads)) {
fprintf(stderr, "%s: failed to eval\n", __func__);
return 1;
}
// get a more accurate load time, upon first eval
if (!ctx->has_evaluated_once) {
ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
ctx->has_evaluated_once = true;
}
return 0;
}
int llama_tokenize(
struct llama_context * ctx,
const char * text,
llama_token * tokens,
int n_max_tokens,
bool add_bos) {
auto res = llama_tokenize(ctx->vocab, text, add_bos);
if (n_max_tokens < (int) res.size()) {
fprintf(stderr, "%s: too many tokens\n", __func__);
return -((int) res.size());
}
for (size_t i = 0; i < res.size(); i++) {
tokens[i] = res[i];
}
return res.size();
}
int llama_n_vocab(struct llama_context * ctx) {
return ctx->vocab.id_to_token.size();
}
int llama_n_ctx(struct llama_context * ctx) {
return ctx->model.hparams.n_ctx;
}
int llama_n_embd(struct llama_context * ctx) {
return ctx->model.hparams.n_embd;
}
float * llama_get_logits(struct llama_context * ctx) {
return ctx->logits.data();
}
float * llama_get_embeddings(struct llama_context * ctx) {
return ctx->embedding.data();
}
const char * llama_token_to_str(struct llama_context * ctx, llama_token token) {
if (token >= llama_n_vocab(ctx)) {
return nullptr;
}
return ctx->vocab.id_to_token[token].tok.c_str();
}
llama_token llama_token_bos() {
return 1;
}
llama_token llama_token_eos() {
return 2;
}
llama_token llama_sample_top_p_top_k(
llama_context * ctx,
const llama_token * last_n_tokens_data,
int last_n_tokens_size,
int top_k,
float top_p,
float temp,
float repeat_penalty) {
const int64_t t_start_sample_us = ggml_time_us();
llama_token result = 0;
// TODO: avoid this ...
const auto last_n_tokens = std::vector<llama_token>(last_n_tokens_data, last_n_tokens_data + last_n_tokens_size);
result = llama_sample_top_p_top_k(
*ctx,
last_n_tokens,
top_k,
top_p,
temp,
repeat_penalty);
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
ctx->n_sample++;
return result;
}
void llama_print_timings(struct llama_context * ctx) {
const int64_t t_end_us = ggml_time_us();
const int32_t n_sample = Max(1, ctx->n_sample);
const int32_t n_eval = Max(1, ctx->n_eval);
const int32_t n_p_eval = Max(1, ctx->n_p_eval);
fprintf(stderr, "\n");
fprintf(stderr, "%s: load time = %8.2f ms\n", __func__, ctx->t_load_us / 1000.0);
fprintf(stderr, "%s: sample time = %8.2f ms / %5d runs (%8.2f ms per run)\n", __func__, 1e-3 * ctx->t_sample_us, n_sample, 1e-3 * ctx->t_sample_us / n_sample);
fprintf(stderr, "%s: prompt eval time = %8.2f ms / %5d tokens (%8.2f ms per token)\n", __func__, 1e-3 * ctx->t_p_eval_us, n_p_eval, 1e-3 * ctx->t_p_eval_us / n_p_eval);
fprintf(stderr, "%s: eval time = %8.2f ms / %5d runs (%8.2f ms per run)\n", __func__, 1e-3 * ctx->t_eval_us, n_eval, 1e-3 * ctx->t_eval_us / n_eval);
fprintf(stderr, "%s: total time = %8.2f ms\n", __func__, (t_end_us - ctx->t_start_us)/1000.0);
}
void llama_reset_timings(struct llama_context * ctx) {
ctx->t_start_us = ggml_time_us();
ctx->t_sample_us = ctx->n_sample = 0;
ctx->t_eval_us = ctx->n_eval = 0;
ctx->t_p_eval_us = ctx->n_p_eval = 0;
}
const char * llama_print_system_info(void) {
static std::string s;
s = "";
s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
return s.c_str();
}
// For internal test use
std::unordered_map<std::string, struct ggml_tensor *>& llama_internal_get_tensor_map(struct llama_context * ctx) {
return ctx->model.tensors;
}