riscvemu/virtualEei.go

134 lines
3.1 KiB
Go

package riscvemu
import (
"math"
"os"
)
type VirtualEEI struct {
memPages map[uint32]*[4096]byte
}
func NewVirtualEEI() VirtualEEI {
return VirtualEEI{
memPages: make(map[uint32]*[4096]byte),
}
}
func (ve *VirtualEEI) ReadByte(addr uint32) (byte, error) {
page, ok := ve.memPages[addr>>12]
if !ok {
return 0, nil
}
return page[addr&0b111111111111], nil
}
func (ve *VirtualEEI) Read16(addr uint32) (uint16, error) {
// n.b. will panic on overflow
page, ok := ve.memPages[addr>>12]
if !ok {
return 0, nil
}
inPageAddr := addr & 0b111111111111
return (uint16(page[inPageAddr+1]) << 8) | uint16(page[inPageAddr]), nil
}
func (ve *VirtualEEI) Read32(addr uint32) (uint32, error) {
// n.b. will panic on overflow
// RISC-V allows 32-bit load/stores to be implemented as either little-endian
// or big-endian. This is the little-endian version
page, ok := ve.memPages[addr>>12]
if !ok {
return 0, nil
}
inPageAddr := addr & 0b111111111111
return (uint32(page[inPageAddr+3]) << 24) | (uint32(page[inPageAddr+2]) << 16) | (uint32(page[inPageAddr+1]) << 8) | uint32(page[inPageAddr]), nil
}
func (ve *VirtualEEI) WriteByte(addr uint32, value byte) error {
page, ok := ve.memPages[addr>>12]
if !ok {
page = new([4096]byte)
ve.memPages[addr>>12] = page
}
// The pointer-to-page-array is a reference type, this will write-through into ve.memPages
page[addr&0b111111111111] = value
return nil
}
func (ve *VirtualEEI) Write16(addr uint32, value uint16) error {
page, ok := ve.memPages[addr>>12]
if !ok {
page = new([4096]byte)
ve.memPages[addr>>12] = page
}
inPageAddr := addr & 0b111111111111
// The pointer-to-page-array is a reference type, this will write-through into ve.memPages
// n.b. will panic on split page boundary
page[inPageAddr+1] = byte((value >> 8) & 0b11111111)
page[inPageAddr] = byte(value & 0b11111111)
return nil
}
func (ve *VirtualEEI) Write32(addr, value uint32) error {
page, ok := ve.memPages[addr>>12]
if !ok {
page = new([4096]byte)
ve.memPages[addr>>12] = page
}
inPageAddr := addr & 0b111111111111
// The pointer-to-page-array is a reference type, this will write-through into ve.memPages
// n.b. will panic on split page boundary
page[inPageAddr+3] = byte((value >> 24) & 0b11111111)
page[inPageAddr+2] = byte((value >> 16) & 0b11111111)
page[inPageAddr+1] = byte((value >> 8) & 0b11111111)
page[inPageAddr] = byte(value & 0b11111111)
return nil
}
// WriteAt implements the io.WriterAt interface on top of the EEI's virtual memory.
func (ve *VirtualEEI) WriteAt(p []byte, off int64) (n int, err error) {
if off < 0 || off >= math.MaxUint32 {
return 0, os.ErrInvalid
}
addr := uint32(off) // bounds-checked
// TODO do something more optimized
for i, bb := range p {
err := ve.WriteByte(addr+uint32(i), bb)
if err != nil {
return i, err
}
}
return len(p), nil
}
func (ve *VirtualEEI) Syscall() error {
panic("syscall")
}
func (ve *VirtualEEI) MemFence(opcode uint32) error {
// In the virtual EEI, a memory fence is a no-op.
// It matters for synchronizing multiple cores or for peripherals.
return nil
}
var _ EEI = &VirtualEEI{} // interface assertion